Shape testing in quantile varying coefficient models with heteroscedastic error
نویسندگان
چکیده
منابع مشابه
Efficient Estimation in Heteroscedastic Varying Coefficient Models
This paper considers statistical inference for the heteroscedastic varying coefficient model. We propose an efficient estimator for coefficient functions that is more efficient than the conventional local-linear estimator. We establish asymptotic normality for the proposed estimator and conduct some simulation to illustrate the performance of the proposed method.
متن کاملVariable selection in quantile varying coefficient models with longitudinal data
In this paper, we develop a new variable selection procedure for quantile varying coefficient models with longitudinal data. The proposed method is based on basis function approximation and a class of group versions of the adaptive LASSOpenalty,which penalizes the Lγ norm of the within-group coefficients with γ ≥ 1. We show that with properly chosen adaptive group weights in the penalization, t...
متن کاملVariable selection in high-dimensional quantile varying coefficient models
In this paper, we propose a two-stage variable selection procedure for high dimensional quantile varying coefficient models. The proposed method is based on basis function approximation and LASSO-type penalties.We show that the first stage penalized estimator with LASSO penalty reduces the model from ultra-high dimensional to a model that has size close to the true model, but contains the true ...
متن کاملQuantile Regression in Partially Linear Varying Coefficient Models by Huixia
Semiparametric models are often considered for analyzing longitudinal data for a good balance between flexibility and parsimony. In this paper, we study a class of marginal partially linear quantile models with possibly varying coefficients. The functional coefficients are estimated by basis function approximations. The estimation procedure is easy to implement, and it requires no specification...
متن کاملTesting in Nonparametric Varying Coefficient Additive Models
In this paper we consider the problem of testing for a general parametric form against a nonparametric alternative for a coefficient function in a varying coefficient multivariate regression model. We propose a test statistic and derive its asymptotic null and alternative distributions. We analyze the asymptotic power of the test in shrinking neighborhoods of the null hypothesis, and show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonparametric Statistics
سال: 2017
ISSN: 1048-5252,1029-0311
DOI: 10.1080/10485252.2017.1303066